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In the absence of detailed pedigree records, researchers
have attempted to estimate individuals’ levels of inbreeding
using molecular markers, generally making use of hetero-
zygosity measures based on microsatellite markers. Here we
report and validate a method for estimating an individual’s
inbreeding coefficient, f, using amplified fragment length
polymorphism (AFLP) markers. We use simulations to
confirm that our measure scales appropriately with f when
allele frequencies can be estimated from a subset of outbred
individuals. We also present an approach for obtaining
satisfactory estimates even in the absence of an independent
set of known outbred individuals from which to estimate allele
frequencies. We then test our method against empirical data

from 179 wild and captive-bred old-field mice, Peromyscus
polionotus subgriseus, comprising pedigree-based estimates
of f, along with genetic data from 94 AFLP markers and 12
microsatellites. Inbreeding estimates based on both AFLP
and microsatellite markers were found to correlate strongly
with pedigree-based inbreeding coefficients. Owing to their
ease of amplification in any species, AFLP markers may
prove to be a valuable new tool for estimating f in natural
populations and for examining correlations between hetero-
zygosity and fitness.
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Introduction

When individuals who are related by descent mate, the
resulting offspring have lower fitness compared to
the mean fitness level of the population. This phenom-
enon is known as inbreeding depression (Frankham et al.,
2002). A large number of studies demonstrating inbreed-
ing depression in both plants and animals have been
published, the most convincing of which are those based
on laboratory or captive population (Ralls et al., 1988;
Pray and Goodnight, 1995; Hauser and Loeschke, 1996;
Lacy et al., 1996; Ballou, 1997). In contrast to laboratory
studies, evidence for inbreeding depression in wild
populations is difficult to find (Crnokrak and Roff,
1999). While this may be because many organisms have
evolved mechanisms to avoid inbreeding, it is also true
that measuring inbreeding coefficients ( f) in natural
populations is notoriously difficult. The most direct
approach requires accurate pedigree information extend-
ing back at least three to four generations. Such detailed
long-term observations are available for only a handful
of populations in a few species such as the Mandarte
Island song sparrow (Keller, 1998), Darwin’s finches
(Keller et al., 2007), the great tit (Greenwood et al., 1978),
blue tit (Kempenaers et al., 1996), Soay sheep and red

deer (Marshall et al., 2002). In general, these are small
and often isolated populations where most individuals
can be tagged and genetically sampled.

While pedigree-based measures provide the best
estimate of f, suitable long-term data are not available
for the majority of species. An alternative approach is to
exploit the fact that inbreeding decreases heterozygosity.
Consequently, f may, in principle, be estimated from
heterozygosity at a panel of neutral genetic markers.
Indeed, if a very large number of genetic markers are
available, heterozygosity may even provide a more
reliable estimate of actual inbreeding compared to
(probably imperfect) pedigree data stretching back a
small number of generations. Early studies employed
allozyme markers (Houle, 1989; Pemberton et al., 1991),
but more recently microsatellite markers have dominated
because of their high variability and their ubiquity in
most genomes (Coltman et al., 1998, 1999; Coulson et al.,
1999; Amos et al., 2001).

Although microsatellites are informative markers for
estimating heterozygosity, there are two important
problems. First, there remain many species for which
microsatellites have not been developed, and although
cross-species amplification often allows the use of
markers developed in related species (Menotti-Raymond
and O’Brien, 1995; Primmer et al., 1996), such amplifica-
tion can be prone to higher errors in the form of elevated
null allele frequencies. Second, although many studies
have revealed correlations between heterozygosity and
fitness using only around 10 markers, recent theory
stresses the benefits of using larger numbers of markers,
both to give improved estimates of genome-wide
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heterozygosity (and hence f) and to increase the chance
of linkage to genes experiencing balancing selection
(Balloux et al., 2004; Slate et al., 2004). Some recent studies
have used larger numbers of markers (Slate et al., 2004),
but for the most part microsatellite development often
ceases when around 10 loci have been found, and most
studies could not increase marker numbers without
further cloning.

One way to increase marker numbers without the
necessity for cloning could be to use techniques that
detect large numbers of anonymous loci without prior
knowledge of the genome. Suitable techniques include
DNA fingerprinting (Jeffreys et al., 1985), random
amplified polymorphic DNA (RAPDs; Williams et al.,
1990), and amplified fragment length polymorphisms
(AFLPs; Vos et al., 1995). Of these, AFLP markers appear
to offer the best balance between reliability (Jones et al.,
1997; Questiau et al., 1999), ease of use and applicability
across a wide range of taxa (Rosendahl and Taylor, 1997;
Mueller and Wolfenbarger, 1999; Madden et al., 2004;
Siemer et al., 2004).

In this study we first predict the theoretical relation-
ship between band absence at dominant markers and
inbreeding coefficient. This relationship is then empiri-
cally investigated using AFLP markers to estimate levels
of inbreeding with a dataset of 179 wild and captive-bred
old-field mice, P. polionotus subgriseus, with known
pedigree-based inbreeding coefficients. In addition, the
utility of AFLP markers at estimating levels of inbreed-
ing is compared with that of microsatellite markers.

Materials and methods

Theoretical expectations and simulations
An extensive literature exists on alternative methods to
estimate relatedness between pairs of individuals using
genetic markers (Queller and Goodnight, 1989; Ritland,
1996; Lynch and Ritland, 1999; Wang, 2002). Applied to
codominant data such as microsatellites, these methods
appear to perform well and suffer relatively little bias
(Wang, 2004). Dominant loci such as AFLP markers
present greater problems because while band absence at
a locus can be inferred to represent homozygosity for the
null allele, presence can indicate either homozygosity for
the present allele or a heterozygous individual carrying
both a present and an absent allele. Several methods
have been proposed to deal with such data (Lynch and
Milligan, 1994; Hardy, 2003; Wang, 2004; Ritland, 2005),
but these tend to suffer from bias in populations where
inbreeding occurs (Wang, 2004). However, when the
required quantity is the inbreeding coefficient itself, a
simpler approach may be possible.

An individual’s inbreeding coefficient can be defined
as the probability that two alleles at a locus are identical
by descent. More inbred individuals therefore exhibit
increased homozygosity. At a dominant AFLP locus,
absence of a band is deemed to indicate homozygosity
for the null allele. Therefore, as homozygosity is
increased through inbreeding, the number of bands
carried by an individual decreases and, consequently,
the number of absent phenotypes increases. This idea has
in the past been applied to DNA fingerprint data
(Kuhnlein et al., 1990; Stephens et al., 1992).

The expected number of null phenotypes, Pexp, carried
by an individual born to unrelated parents and scored at
n AFLP bands is given by:

Pexp ¼
Xn

i

p2
i ð1Þ

where pi is the frequency of the null allele at locus i in the
population. In an inbred individual with inbreeding
coefficient f, this increases to:

Xn

i

ð1 � fÞp2
i þ fpi

� �
�

Xn

i

p2
i þ f

Xn

i

ðpi � p2
i Þ ð2Þ

Hence, on average an individual with inbreeding
coefficient f will carry f

Pn
i ðpi � p2

i Þ more null pheno-
types than an equivalent non-inbred individual, allowing
an individual’s AFLP-based inbreeding coefficient, fAFLP

to be estimated as:

fAFLP ¼
Pobs � Pexp

Pn

i

ðpi � p2
i Þ

ð3Þ

where Pobs is the observed number of null phenotypes in
the individual. This is directly equivalent to the estimator
proposed by Ritland and Travis (Ritland and Travis,
2004) for codominant markers:

f̂ ¼
dij � pi

1 � pi
ð4Þ

where dij¼ 1 if the locus is homozygous (allele i¼ allele j)
and pi is the population frequency of allele i.

To explore the behaviour of the estimator fAFLP, we
used stochastic simulations based on either 100 loci, a
similar number to that used in this study, or 1000 loci, the
maximum number likely to be employed in a large study.
Null allele frequencies were sampled from a flat
distribution in the range 0.05–0.95. For each value of
f (f was varied from 0 to 0.5 in steps of 0.05), 100
genotypes were simulated and fAFLP calculated, yielding
a mean and standard deviation.

In our study, we are fortunate to have an external
group of known outbred mice from which to obtain
reasonably unbiased estimates of pi. When such a group
is not available, it becomes impossible to estimate
simultaneously both the allele frequency at a locus and
f. In particular, one cannot distinguish between groups of
individuals with different mean f but the same variance.
One attempt to circumvent this problem has been to
assume that allele frequencies follow a b distribution and
to estimate the parameters of this distribution rather than
individual allele frequencies. Unfortunately, although
this works well for estimating Fst, its accuracy is very
poor when applied to estimate f (Holsinger et al., 2002).
The proportion of inbred individuals in wild populations
is in general very low (Marshall et al., 2002). Therefore,
we follow an alternative approach that makes the
reasonable assumption that appreciable numbers of
outbred individuals are present. Thus, when the variance
in fAFLP is low, indicating homogeneous f, the sample is
inferred to be outbred.

Given a set of samples with AFLP genotypes but
unknown f, we attempt to find the best match between
empirically derived f-values and equivalent values
derived by simulation. Starting with the assumption that
at least 50% of individuals are outbred, f¼ 0, we explore
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all possible combinations of individuals with f¼ 0,
f¼ 0.1, f¼ 0.25 and f¼ 0.5, in steps of two individuals,
from all with f¼ 0 to 50% with f¼ 0 and 50% with f¼ 0.5.
For each combination we test the hypothesis that this is
the correct combination of f-values, as the observed band
counts overestimate the frequency of null alleles by a
quantity that depends on the mean f-value. Conse-
quently, we begin by calculating mean f over all
individuals and use this to adjust the raw frequencies
of null alleles using Equation (1) above. We then use
these adjusted frequencies to generate 10 000 simulated
genotypes in input proportions. Finally, we calculate
fAFLP for both the empirical and the simulated genotypes
and test the how similar the resulting frequencies are
using a w2 test. Repeating over all combinations of input
f-values, we search for the combination that yields the
lowest w2 value.

To test the effectiveness of our frequency distribution
matching, we generated a range of simulated datasets
based on 200 individuals typed for 100 AFLP bands with
the frequency of null phenotypes chosen at random from
a flat distribution with bounds 0.05 and 0.95. We
examined five combinations of f-values:

(a) 200 individuals with f¼ 0
(b) 150 individuals with f¼ 0, 50 individuals with f¼ 0.1
(c) 150 individuals with f¼ 0, 50 individuals with f¼ 0.5
(d) 100 individuals with f¼ 0, 50 individuals with f¼ 0.1,

50 individuals with f¼ 0.5
(e) 100 individuals with f¼ 0, 50 individuals with

f¼ 0.25, 50 individuals with f¼ 0.5.

This frequency matching procedure was repeated 100
times for each scenario to yield a mean and standard
deviation for the estimated mean f-value (fAFLPFM) of
each f-class. For comparison we also calculated fAFLP

values using both the input band frequencies (fAFLPI) and
frequencies based on the unadjusted band counts
(fAFLPR).

Empirical data
Old-field mice, P. polionotus subgriseus, from Ocala
National Forest, Marion County, Florida, USA were
trapped in 1998. Thirty-five mice were collected, of
which 26 were randomly selected to found the experi-
mental stocks at Brookfield Zoo (Brookfield, IL, USA).
Mice were paired to produce offspring with a range of
inbreeding coefficients (0–0.453) over five generations of
laboratory breeding and the resulting pedigree was
recorded. The breeding design was not regular and
pairings were arranged to produce a mixture of inbred
and non-inbred (or weakly inbred) mice each generation.
Breeding protocols followed those reported in earlier
studies of this species (Lacy et al., 1996; Lacy and Ballou,
1998).

DNA was extracted from tissue samples of all 35 of the
original wild mice and 144 captive-bred mice (represent-
ing animals with the full range of inbreeding coefficients)
by Proteinase K digestion using an adapted Chelex 100
protocol (Walsh et al., 1991) and the DNA purified using
a standard phenol-chloroform procedure (Sambrook
et al., 1989). The samples were genotyped using eight
AFLP primer combinations (TaqI-CAC with EcoRI-ACA,
TaqI-CCA with EcoRI-ACA, TaqI-CGA with EcoRI-ACA,
TaqI-CTG with EcoRI-ACA, TaqI-CAG with EcoRI-ACA,

TaqI-CAC with EcoRI-AAC, TaqI-CAC with EcoRI-ATG,
TaqI-CAC with EcoRI-AGC). The AFLP protocol was
similar to that used in Vos et al. (1995) and the primer
sequences and reaction conditions are described in
Madden et al. (2004). Both AFLP and microsatellite PCR
products were resolved by electrophoresis through 6%
acrylamide gels, visualised by autoradiography and
scored by eye. Ninety-four AFLP loci were polymorphic
and could be scored unambiguously.

To enable a comparison between AFLP markers and
the more widely used microsatellite markers, all 179
samples were also genotyped at 12 microsatellite loci:
Pml1, Pml2, Pml4, Pml6, Pml7, Pml10, Pml11 (Chirhart
et al., 2000), Plgt58, Plgt62, Plgt66 (Schmidt, 1999), Po3-68
and Po97 (Prince et al., 2002). Amplification was carried
out in 10 ml volumes containing 0.5 ml of diluted template
DNA, 1� buffer (100 mM Tris-HCl pH 8.0, 50 mM KCl,
1.5 mM MgCl2, 0.01% Tween 20, 0.01% gelatine, 0.01%
IGepal), 0.5 mM additional MgCl2, 0.2 mM each of dATP,
dTTP and dGTP, 0.05 mM dCTP, 400 nM of each primer,
0.25 U Taq polymerase, and 0.1 mCi [a32P]-dCTP.
The following PCR program was used: 3 min denaturing
at 94 1C; followed by 35 cycles of 30 s at 94 1C, 30 s at the
annealing temperature (51 1C to 63 1C depending on the
locus), 25 s at 72 1C; ending with a 20 min final elongation
stage at 72 1C. All microsatellite loci were found to be in
Hardy–Weinburg equilibrium in the wild mice (GENE-
POP 3.3; Raymond and Rousset, 1995).

Assuming that the founding wild mice are non-inbred
and unrelated to one another, the known pedigree was
used to calculate f, the probability that two homologous
alleles in an individual are identical by descent (Wright,
1922), for each of the 145 captive-bred mice. The resulting
inbreeding coefficients ranged from 0 to 0.453, with a
mean of 0.183. Relative levels of inbreeding of each of the
wild and captive-bred mice were also estimated from
microsatellite genotypes by calculating microsatellite
heterozygosity, Hmsat, calculated as the total number of
loci at which a particular individual is heterozygous,
divided by the number of loci at which it was genotyped.
Estimators of inbreeding that require knowledge of allele
frequencies, such as internal relatedness (Amos et al.,
2001), were not used as the microsatellites have high
allelic diversities and allele frequency estimates based on
only 35 individuals are rather inaccurate. A third
measure of inbreeding estimated from AFLP genotypes,
the AFLP-based inbreeding coefficient, was calculated
using Equation (3), with Pexp and pi estimated from the
35 wild caught individuals.

Results

Simulations show that the AFLP-based inbreeding
estimator, fAFLP, varies linearly with inbreeding coeffi-
cient (Figure 1). Neither the gradient of the relationship
nor the y-intercept differs significantly from 1 and 0
respectively, indicating that the average values of our
estimator agree closely with the inputted values of f.
As expected, using more loci improves the performance
of the estimator (Figure 1).

We next sought to estimate fAFLP in simulated samples
of animals where the allele frequencies have to be
estimated from the data themselves, without an extrinsic
sample of outbred individuals. Summary results for the
frequency matching method (fAFLPFM) are presented in
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Table 1 with, for comparison, equivalent estimates based
on the input allele frequencies (fAFLPI) and on unadjusted
allele frequencies based on raw allele counts (fAFLPR).
For each of the five scenarios, the three methods of
inferring f and three classes of f, values are presented for
the average estimate of f and the associated standard
deviation calculated across 100 replicates. As expected,
fAFLPI recovers the input distributions with high fidelity,
while fAFLPR increasingly underestimates f as mean
f increases. In comparison, fAFLPFM appears to be quite
effective, even though the variance of the estimates is
almost double that of fAFLPI. fAFLPFM does show an
upward bias when inbred individuals are scarce/absent,
presumably because any chance deviations from the
perfect inference of f¼ 0 are only allowed in the direction
of finding some (rather than negative numbers of) inbred
individuals. This bias could perhaps be addressed by
allowing hypothetical negative deviations in mean f, or,
more pragmatically, by requiring that any inferred
presence of inbred individuals is allowed only if it yields
a statistically significant improvement in fit over the null
condition of all individuals having f¼ 0. As soon as
appreciable numbers of inbred individuals are gener-
ated, this bias is eroded and the fit between the input
conditions and the inferred frequencies becomes good.

We next examined the correlation between pedigree-
based f and estimators based on real AFLP and
microsatellite markers genotyped in 179 wild and
captive-bred mice. Figures 2a and b show that strong
correlations exist for both AFLP markers and micro-
satellite loci (fAFLP: r2¼ 0.30, P¼ 2� 10�15; Hmsat: r2¼ 0.39,
Po2� 10�16). There was no significant difference in the
amount of variance in f explained by fAFLP or Hmsat

(ANOVA, P¼ 0.3). The regression between f and fAFLP

had a gradient of 1.44±0.16 and an intercept of
0.085±0.035. These are significantly different from the
theoretical expectations of 1 (P¼ 0.02) and 0 (P¼ 0.01),
respectively, perhaps indicating the action of selection or
some level of non-independence between some bands.
When the inbreeding estimators for both wild and
captive-bred mice are compared with one another, fAFLP

correlates significantly with Hmsat (r2¼ 0.11, n¼ 179,
P¼ 8� 10�6), indicating that these estimators carry
significant amounts of common information. However,

Table 1 Estimation of inbreeding coefficients in simulated data
using three methods

A
Actual f 0.0 0.0 0.0
Estimated f

fAFLPI 0.00 (0.03) 0.01 (0.04) 0.00 (0.04)
fAFLPR 0.00 (0.02) 0.00 (0.03) 0.00 (0.03)
fAFLPFM 0.00 (0.02) 0.01 (0.04) 0.00 (0.04)

B
Actual f 0.0 0.0 0.1
Estimated f

fAFLPI 0.00 (0.02) 0.00 (0.03) 0.10 (0.03)
fAFLPR �0.03 (0.02) �0.02 (0.03) 0.08 (0.03)
fAFLPFM �0.02 (0.02) �0.02 (0.04) 0.08 (0.03)

C
Actual f 0.0 0.0 0.5
Estimated f

fAFLPI 0.00 (0.02) 0.00 (0.03) 0.50 (0.04)
fAFLPR �0.13 (0.02) �0.13 (0.03) 0.38 (0.03)
fAFLPFM 0.02 (0.04) 0.02 (0.05) 0.52 (0.05)

D
Actual f 0.0 0.1 0.5
Estimated f

fAFLPI 0.00 (0.02) 0.10 (0.03) 0.50 (0.03)
fAFLPR �0.15 (0.02) �0.05 (0.03) 0.36 (0.03)
fAFLPFM 0.00 (0.05) 0.10 (0.05) 0.50 (0.05)

E
Actual f 0.0 0.25 0.5
Estimated f

fAFLPI 0.00 (0.02) 0.25 (0.03) 0.51 (0.03)
fAFLPR �0.20 (0.02) 0.06 (0.03) 0.33 (0.03)
fAFLPFM �0.02 (0.05) 0.24 (0.07) 0.49 (0.06)

Each of the five panels, A–E, present the results of stochastic
simulations in which 200 individuals are generated with three levels
of inbreeding in different proportions: in every case there are 100
individuals with f¼ 0 plus two sets of 50 individuals with f values
of, variously, 0, 0.1, 0.25 and 0.5, as indicated in the italicised top
line. For each of the five scenarios, three approaches are used to
infer f from 100 AFLP markers using our estimator fAFLP but based
on different methods of estimating the allele frequencies: using the
input allele frequencies (fAFLPI), using unadjusted frequencies based
on raw phenotype counts (fAFLPR) and using our frequency
matching algorithm (fAFLPFM, see text for details). For each method
we present the mean estimate for each level of f, averaged over 100
replicate simulations, and standard deviation (in brackets).
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Figure 1 Expected theoretical relationship between inbreeding
coefficient and amplified fragment length polymorphism (AFLP)-
based inbreeding coefficient, fAFLP, obtained from genotypes with
simulated allele frequencies using (a) 100 AFLP loci and (b) 1000
AFLP loci. Vertical lines represent standard deviations.
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no such relationship exists between the estimators when
only the wild mice are used in this analysis (r2¼ 0.00,
n¼ 35, P¼ 0.97). In a multiple regression of f with fAFLP

and Hmsat using all 179 wild and captive-bred mice, 53%
of the variation in f is explained (r2¼ 0.53, P¼ 5� 10�11

and o2� 10�16, respectively), indicating that the two
estimators provide independent rather than overlapping
information about f.

In order to investigate how both AFLP-based inbreed-
ing coefficient and microsatellite heterozygosity correlate
with inbreeding at lower levels of inbreeding, linear

regressions of f against fAFLP and Hmsat were repeated but
using progressively fewer inbred individuals. The results
of this analysis are summarised in Table 2. In our dataset,
the correlations between f and fAFLP and Hmsat were not
significant when only individuals with fo0.05 were used
in the analysis. At these lower levels of inbreeding
(0.05ofo0.15), the correlation between f and fAFLP were
stronger than those between f and Hmsat.

Applying our frequency matching analysis to the total
mouse dataset (including both wild-caught and captive-
bred individuals) we obtain a very satisfactory outcome,
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Figure 2 Pedigree-based inbreeding coefficient vs (a) amplified fragment length polymorphism (AFLP)-based inbreeding coefficient and (b)
microsatellite heterozygosity. Pedigree-based pairwise relatedness vs (c) relatedness estimated using AFLP markers and (d) relatedness
estimated using microsatellite markers.

Table 2 Linear regressions of inbreeding coefficients against microsatellite heterozygosity and AFLP-based inbreeding coefficient for
different inbreeding coefficient ranges

Inbreeding coefficient range n Microsatellite heterozygosity AFLP-based inbreeding coefficient

r2 P r2 P

0–0.05 77 0.023 0.2 0.0038 0.6
0–0.10 84 0.064 0.02 0.098 0.003
0–0.15 104 0.066 0.008 0.15 3� 10�5

0–0.20 107 0.11 0.0005 0.12 0.0003
0–0.25 124 0.24 9� 10�9 0.18 6� 10�7

0–0.30 136 0.35 2� 10�14 0.27 6� 10�11

0–0.35 148 0.33 3� 10�14 0.28 5� 10�12

0–0.40 174 0.35 o2� 10�16 0.32 4� 10�16

0–0.45 177 0.37 o2� 10�16 0.32 3� 10�16

0–0.49 179 0.39 o2� 10�16 0.30 2� 10�15
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if anything, performing better than using allele frequen-
cies calculated from our outbred group. The resulting
graph is essentially the same as Figure 2a but with a
shifted intercept. This is because the rank order of fAFLP

values depends on only the number of null phenotypes
in each individual, and therefore does not change.
Similarly, in our approach, any refinement of the allele
frequencies acts across all loci equally, such that
alternative solutions act only to shift the intercept, and
have little or no impact on the slope. Bearing this is
mind, we can compare the use of raw allele frequencies
(intercept¼�0.258±0.03 s.e.), with the use of the
wild-caught animals to estimate allele frequencies
(intercept¼ 0.089±0.03 s.e.) and with our new frequency
matching method (intercept¼�0.01±0.04 s.e.). In all
cases the slope is very similar, at B1.4, and steeper than
the unity slope expected, but the frequency matching
method yields the closest solution to the ideal of the
intercept being zero.

Genetic markers can also be used to estimate related-
ness between individuals. With reference to a certain
base population, the relatedness between two indivi-
duals is the probability of sharing alleles that are
identical by descent, and can be estimated from genetic
data using any of several methods (Queller and Good-
night, 1989; Lynch and Ritland, 1999). Assuming
unrelated founders, the pedigree was used to calculate
the ‘coefficient of relationship’ or theoretical additive
genetic correlation, r (Crow and Kimura, 1970), between
all pairs of the 179 study mice. Measures of pairwise
relatedness were also calculated based on allele sharing
at either microsatellite (rmsat) or AFLP (rAFLP) loci.
For microsatellites, we again chose a method that avoids
the need to estimate allele frequencies, calculating
relatedness as the total number of identical alleles
between a pair of individuals (0, 1 or 2 per locus)
divided by twice the number of loci considered (Blouin
et al., 1996; Ellegren, 1999). For AFLP genotypes, we
again opted for simplicity, calculating relatedness values
as the number of identical states (presence or absence of
the band) between a pair of individuals divided by the
number of loci used.

To test the reliability of our genetic relatedness
estimators we examined how well they correlated
both with pedigree-based coefficient of relationship
and with each other. In each comparison, the significance
of the correlation between the pairwise relatedness
matrices was assessed using a Mantel test, implemented
within the software zt (Bonnet and Van de Peer, 2002)
with 100 000 randomisations. AFLP and microsatellite-
based estimators of relatedness (rAFLP and rmsat)
were found to correlate significantly with pedigree-based
relatedness, r (r¼ 0.391 and 0.550, respectively, n¼ 179,
P¼ 1�10�5, Figures 2c and d). The pairwise relatedness
matrices rAFLP and rmsat are also significantly correlated
with each other (r¼ 0.294, P¼ 4� 10�5) indicating
shared information. A significant correlation exists even
when rAFLP and rmsat for only the 35 wild mice are
compared (r¼ 0.199, P¼ 4� 10�5). Relatedness matrices
rAFLP and rmsat estimate the relatedness between the
wild mice using different types of markers. As they are
estimating the same parameter, a significant correlation
between the two relatedness matrices indicates that
there is an overlap of information between the two
estimators, which probably arises from there being

detectable levels of relatedness between the wild caught
mice.

Effect of locus number
An important question facing any study that attempts to
use genetic markers to estimate either f or relatedness is
how many markers are required. To investigate how the
strengths of the relationships between pedigree-based
and genetic measures of f and relatedness vary with the
number of loci used, separate locus-dropping simula-
tions were conducted for AFLP and microsatellite loci.
In each case, n loci were chosen at random from
the available 12-microsatellite/94 AFLP loci. From the
genotypes at these n loci, fAFLP, Hmsat and the pairwise
relatedness matrices rAFLP and rmsat were calculated for
all 179 study mice. For each value of n, the process was
repeated with different combinations of the n loci either
100 times or the number of possible unique combinations
of loci, whichever was smaller. For microsatellites, n was
increased from 2 to 11, and for the AFLPs from 2 to 93, in
steps of one. Separate linear regressions of f against fAFLP

and Hmsat were carried out for each replicate set, yielding
a mean and the standard deviation of r2 (Figures 3a and
b). In our dataset we find that 94 AFLP markers are
approximately equivalent to 12 microsatellite markers
for estimating inbreeding. Finally, we conducted locus-
dropping simulations to explore the effect of locus
number on AFLP and microsatellite-based relatedness
estimates (Figures 3c and d). Here, as few as three to four
microsatellite loci appear to perform as well as 90 AFLP
loci.

Discussion

The primary objective of this study was to establish
whether AFLP data could be used to estimate levels of
inbreeding. A theoretical model shows that AFLP-based
inbreeding coefficients should correlate with inbreeding
coefficient. This conclusion was supported by empirical
data in which AFLP-based inbreeding coefficients were
found to correlate strongly with f. Empirical data
were also used to compare the performance of AFLP
and microsatellite at estimating inbreeding. In this
respect, in our dataset 94 AFLP markers were equivalent
to 12 microsatellite markers. We also propose a method
for estimating allele frequencies and f values from AFLP
markers among a group of organisms with unknown
f values as long as an appreciable proportion of them are
outbred. We show this method works well both on
simulated data and on our mouse dataset.

When allele frequencies can be determined extrinsi-
cally from a large sample known outbred individuals,
f values can be estimated from AFLP data using a simple
equation based on the excess of null phenotypes. We
confirm this using stochastic simulations. However, in
most real scenarios the requirement is to estimate both
allele frequencies and f values from the same dataset.
A general solution is not possible due to insufficient
degrees of freedom, and a partial solution based on
estimating the overall distribution of allele frequencies
rather than for each locus separately reveals an unusable
level of bias (Holsinger et al., 2002). We also find bias in
two different approaches we trial, one where progres-
sively more and more individuals are treated as being
inbred, and one that matches the real data to simulated
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distributions. However, these biases are complementary
and by combining the two methods and at the same time
assuming that at least half the individuals are outbred
(typically levels of inbreeding are far lower in wild
populations), we produce an algorithm that seems
effective at estimating the underlying allele frequencies
and hence the f values of individuals concerned. Applied
to our mouse dataset, this method is strikingly success-
ful, recovering estimates of f that are arguably better than
those obtained using allele frequencies from our small
set of outbred individuals. Our approach should be of
utility in real scenarios, where the identity of inbred
individuals is unknown.

Although the AFLP-based estimator of inbreeding
coefficients works well on simulated data, when applied
to real data from a mouse pedigree, the gradient of the
relationship between known f and fAFLP was significantly
steeper than the slope of unity expected. There are a
number of possible reasons for this difference. First, the
simulations were based on unlinked biallellic dominant
markers. While it is expected that most AFLP markers fit
these three criteria (Krauss, 1999; Questiau et al., 1999;
Parsons and Shaw, 2001) it is likely that a few of the 94
AFLP markers used may not. Second, there will be some
scoring error although this should be low in our study as
only easily scoreable loci were used. Third, as the
calculation of fAFLP involved estimating Pexp and pi from
the genotypes of only 35 individuals, fAFLP values are
likely to be imprecise, though the resulting error is
unlikely to be either large or systematic. Fourth, there
will be some bias in the loci used in the analysis.
A proportion of AFLP markers with very low present or
absent allele frequencies would be excluded from the
analyses as they would appear to be absent or mono-
morphic in the genotyped samples. While the individual
influence of each factor on fAFLP is expected to be small,
the cumulative effect is probably responsible for the

significant departure of the empirical data from theore-
tical expectations. Finally, allele frequencies may have
been influenced by natural selection, particularly given
that wild-caught mice may be adapting to captive
conditions.

A small number of studies have compared pedigree-
based inbreeding coefficients with heterozygosity esti-
mates based on microsatellite genotypes, reviewed in
Slate et al. (2004). Three of the seven systems examined
show significant correlations between the two
parameters. However, the population sizes for some of
these systems are small (wolves, Canis lupus, n¼ 30;
Hedrick et al., 2001), while in some of the larger systems
there is some evidence of inaccuracies in the pedigrees
(Coopworth sheep; Slate et al., 2004). Our sample size of
179 individuals is greater than those in most previously
reported studies. In addition, our experimental animals
were kept under laboratory conditions and the sexes
kept apart unless matings were required for the purposes
of the study (Lacy et al., 1996). Under these conditions,
inaccuracies in the pedigree that lead to errors in the
calculation of inbreeding coefficients are expected to be
very low or non-existent. Thus, results obtained from our
dataset are unlikely to be affected by methodological
inaccuracies, other than those caused by the assumption
that the wild-caught founders were unrelated and
non-inbred.

Comparing AFLPs and microsatellites we find that
while both perform well at estimating both f and
relatedness, per locus scored, microsatellites in general
outperformed AFLP markers. Molecular markers carry
information about f and relatedness through allelic state.
For f this is the identity of alleles within an individual,
while for relatedness it is through the identity of alleles
between individuals. However, in both cases what is
important is the identity of alleles by descent. Therefore,
loci with higher allelic diversity carry more information
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Figure 3 Effect of locus number on the relationship between pedigree-based inbreeding coefficients and (a) amplified fragment length
polymorphism (AFLP)-based inbreeding coefficient, (b) microsatellite heterozygosity. Effect of locus number on the relationship between
pedigree-based pairwise relatedness and (c) relatedness estimated using AFLP markers, (d) relatedness estimated using microsatellite
markers. Vertical lines represent standard deviations.
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due to the greater probability that when alleles are
identical by state they are also identical by descent.
The information carrying content of each locus will also
be affected by the allele frequency distribution, loci with
highly skewed distributions in general being less
informative. In our study there were on average 10.3
alleles per microsatellite locus compared to only two
alleles per AFLP locus. The dominant nature of AFLP
markers combined with low allelic diversity account for
the lower per locus performance of AFLP compared to
microsatellite markers. However, the low per locus
information content of AFLP markers is compensated
for by the fact that large numbers of polymorphic AFLP
loci are usually readily amplified.

One possible way to improve fAFLP might be to weight
each locus according to its information content. This
can be conveniently achieved by multiplying the
contribution of each locus by the inverse of the variance
of the single locus estimate, p/2�p (where p is the null
allele frequency; K Ritland, Personal Communication).
In practice, in our simulations we find that this does
reduce the variance of the fAFLP values when mean f is
low or zero by B10%. However, as f increases the benefit
reduces and even reverses, particularly when applied to
our method for estimating f without an extrinsic set of
unrelated individuals. Presumably this is related to the
fact that the weighting factor assumes f¼ 0. In addition,
the weighting appears to introduce a small but consistent
negative bias (B1%). For these reasons, we do not
present results that incorporate locus weight, but this is
clearly an interesting avenue for future research.

While both AFLP-based inbreeding coefficient and
microsatellite heterozygosity correlate strongly with f,
there is a large amount of unexplained variance with
only B30 and B40% of the variance in f being explained
by each marker type, respectively. Much of the unex-
plained variance is likely due to ‘noise’ caused by the
same problem of alleles in an individual being identical
by state but not identical by descent. This problem
should be greater for AFLP markers as there are only two
alleles per locus. The ability of AFLP markers to estimate
f will also be adversely affected by the fact that being
dominant markers, at each locus the presence of a band
could indicate either a homozygote or a heterozygote.
The fact that a model including both microsatellite
heterozygosity and AFLP-based inbreeding coefficient
explained significantly more variance in f than either
predictor separately suggests that using more markers,
whatever they are, will tend to improve estimates of f,
and that data from different markers can be combined.
When data from AFLP and microsatellites are combined,
the variance explained exceeds 50%, suggesting that
very large numbers of markers would yield excellent
estimates of f.

In systems with random mating, simulation studies
indicate that incest occurs too rarely to be detectable
using genetic markers (Balloux et al., 2004; Slate et al.,
2004). Thus, in a homogenous population of 1000
individuals, use of around 10 microsatellites cannot
detect inbreeding, a situation that does not change even
when the number of markers is raised to 200 (Balloux
et al., 2004; Slate et al., 2004). This leads to the question of
whether or not AFLP or microsatellite loci can detect
inbreeding in wild populations. For the most part, the
answer is probably no. However, there are a number of

exceptions. Large predators and organisms living on
islands or in fragmented habitats often exist in small
populations. In addition, most populations are not
homogenous and instead have some level of population
structuring making incestuous matings more probable.
In particular, overlapping generations, high reproductive
skew and philopatry may create circumstances in which
close inbreeding may occur naturally (Hoffman et al.,
2004). Moreover, in many plant species, the absence of
opportunities for cross-fertilisation can lead to self-
fertilisation and other forms of close inbreeding (Steb-
bins, 1950; Lande, 1985). Thus, the combination of small
population sizes with particular population structures
and mating systems may give rise to circumstances
under which levels of inbreeding in wild populations are
high enough to be detected using molecular markers.

Given uncertainties about the frequency of close
inbreeding in natural populations, the question arises
as to whether AFLP or microsatellite loci can detect
inbreeding in wild P. polionotus. We did not find any
significant correlation between our AFLP and micro-
satellite-based estimators of inbreeding for the 35
founding wild mice, suggesting that levels of inbreeding
in these mice are too low to be detected. However, the
sample size for this comparison is small and a significant
correlation might not be detectable without many more
samples. Furthermore, the pairwise relatedness estimates
between the wild mice based on AFLP and microsatel-
lites do correlate significantly with one another. This is
encouraging because it implies that there are detectable
levels of relatedness between some of the wild mice.
Since molecular estimates of f are directly analogous to
estimates of parental relatedness, but based on half the
information (one allele from each parent per locus
instead of four alleles across the two individuals) it
seems reasonable to conclude that the conditions we
deployed are at least close to being able to detect
inbreeding in this system.

A number of recent studies have employed micro-
satellite markers to investigate correlations between
heterozygosity and fitness (Coltman et al., 1998; Slate
et al., 2000; Amos et al., 2001), several of which report
marker specific effects (Heath et al., 2002; Merila et al.,
2003; Acevedo-Whitehouse et al., 2006) with a few loci
contributing excessively to the overall heterozygosity-
fitness correlation (HFC). These loci are thought to be
linked to genes experiencing balancing selection.
The chance of finding single locus heterosis with
microsatellite markers is limited by the number of loci
genotyped. Although the current move in HFC studies is
towards greater genome coverage using larger numbers
of loci, such studies are still constrained by the number
of microsatellite loci available, typically only 10–15 loci
(Hoffman et al., 2004; Acevedo-Whitehouse et al., 2006).
Unless the organism being studied is a model system, the
need for large numbers of microsatellites requires
extensive microsatellite cloning effort, or the screening
of loci isolated in other species which often suffer from
higher null allele frequencies.

We propose that AFLP loci offer a useful alternative
class of markers to microsatellites for estimating f and for
the investigation of HFCs. Large numbers of poly-
morphic AFLP loci can be readily amplified in the
majority of systems without the need for time consuming
cloning. AFLP markers will allow a larger proportion of
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an organism’s genome to be covered, potentially allow-
ing investigation of linkage to greater numbers of genes
than is usual using microsatellites. However, as AFLPs
are dominant markers with only two alleles per locus,
the problem of lower information content per locus
compared to microsatellites will reoccur. This may mean
that HFCs are not detectable unless large sample sizes
are used or the correlation is strong. Although the utility
of AFLP markers in HFC detection has yet to be tested,
they may prove to be a valuable additional molecular
tool in such studies, especially as they are easily
amplifiable in any species without requiring optimisa-
tion or primer development.
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